Cooling Tower Wastewater Treatment Design Report

BOC Limited - Kooragang Island

16 November 2016

Cooling Tower Wastewater Treatment Design Report

BOC Limited - Kooragang Island

16 November 2016

MJM Environmental Pty Ltd ABN 21 089 600 019 Office 1, Level 2 355 Wharf Road Newcastle, NSW, 2300 Telephone: 02 4926 4222 Facsimile: 02 4929 4944 E-mail: enquiries@mjmenvironmental.com.au

Document (Control		Approved for I	ssue		
Project ID	Revision	Author	Reviewer	Name	Signature	Date
034 1612	0	A Bucior	A Majerowski B Kelly	M Majerowski		07/11/2016
034 1612	1	A Bucior	A Majerowski B Kelly	M Majerowski		16/11/2016

© MJM Environmental 2016

This document shall remain the property of MJM Environmental. Unauthorised use of this document in any form is prohibited. Information contained within this Document is 'Commercial in Confidence'.

Table of Contents

1	INTR	ODUCTIO	ON	4
	1.1	BOC LIN	/ITED KOORAGANG ISLAND	4
	1.2	BACKGR	OUND	4
	1.3	PROJECT	OBJECTIVES	4
2	SITE	IDENTIFI	CATION	4
3	ASSE	SSMENT	OF CURRENT WASTEWATER STORAGE SYSTEM	6
	3.1		W OF CURRENT WASTEWATER STORAGE SYSTEM	
	3.2	CURREN	t Water Quality Assessment	7
4	PILO [.]	T PLANT	TRIAL FOR REMOVAL OF FLUORIDE	12
5	WAS	TEWATE	R TREATMENT DESIGN	13
	5.1	PROPOS	ed Treatment System	13
		5.1.1	Design Basis	13
		5.1.2	Treatment Process Design	13
	5.2	PROPOS	ED IRRIGATION OPTION	14
		5.2.1	Irrigation Pipework Overview	
		5.2.2	Irrigation Area	
	5.3		TIMATES	
6	RECO	OMMEN	DATIONS	16

List of Figures

Figure 2-1: BOC Limited Kooragang and vicinity (Spatial Information Exchange [SIXMaps] 2016)	5
Figure 2-2: Location of BOC Limited's cooling towers and wastewater tanks	
Figure 3-1: Current cooling tower blowdown wastewater storage tanks	
Figure 3-2: BOC Kooragang cooling towers	
Figure 5-1: Proposed filters and irrigation pipework	
Figure 5-2: Proposed irrigation area	

List of Tables

able 3-1: Cooling tower wastewater sampling analytes7
able 3-2: BOC Limited cooling tower wastewater sampling results8
able 4-1: BOC Kooragang pilot trial treated water quality results12
able 5-1: Treatment option design criteria
able 3-2: BOC Limited cooling tower wastewater sampling results8

Appendices

Appendix A Process and Instrumentation Diagram

1 Introduction

1.1 BOC Limited Kooragang Island

BOC Limited - Kooragang Island, herein referred to as BOC Kooragang, owns and operates a gas facility for the production and supply of gas products located at 9 Egret Street Kooragang, New South Wales. The facility operates 24 hours per day, 7 days per week. BOC Kooragang holds NSW Environmental Protection Authority (EPA) Environmental Protection Licence (EPL) 20165. The Scheduled Activities in the EPL include dangerous goods production, general chemicals storage and chemical storage waste generation.

1.2 Background

BOC Kooragang currently possess two (2) cooling towers onsite. Currently the cooling tower blowdown (waste) water continues to two (2) 10,000 litre capacity storage tanks, totalling a capacity of 20,000 litres storage onsite. The wastewater is collected by an approved waste contractor approximately once per week.

BOC Kooragang are researching the possibility of utilising the cooling tower wastewater for irrigation purposes in specific grassed areas of the site. Water quality analysis performed in August 2016 showed that the wastewater contains fluoride concentrations which are above the applicable guideline limits.

In order to research the possibility of utilising the cooling tower wastewater onsite MJM Environmental (MJM) was engaged by BOC Kooragang to undertake a treatment options assessment. In order to verify key process design parameters for the treatment options assessment, a bench-scale jar testing investigation was completed to trial current defluoridation techniques including coagulation and pH precipitation. The results of the investigation showed these methods were ineffective in removing the high levels of fluoride.

In October 2016 MJM carried out a pilot plant trial at the BOC Kooragang site. The objective of the trial was to determine the effectiveness of activated alumina (AA) media adsorption for removing fluoride from the cooling tower blowdown wastewater. Two trials were conducted which included AA adsorption with pH correction and AA adsorption without pH correction.

As a result of the trials it was found that AA adsorption was effective in removing the fluoride to below the recommended irrigation threshold limits. It was also found that pH correction was not required with a maximum fluoride removal of 99% achieved with AA adsorption without pH correction.

It was recommended that BOC Kooragang proceed with a treatment design based on the results of the pilot trial. This report details the treatment design for the cooling tower blowdown wastewater.

1.3 Project Objectives

BOC has engaged MJM Environmental to complete a treatment design for the cooling tower blowdown wastewater based on the results of the pilot trial.

The scope of works for the project includes the following:

- Overview of current wastewater storage system
- Review of wastewater quality
- Development of treatment design
- Approximation of capital costs, operating costs and life cycle cost estimates
- Recommendation

2 Site Identification

BOC Kooragang operates a gas facility located at 9 Egret Street Kooragang, New South Wales. The plant vicinity map and location of the cooling towers and wastewater storage tanks are shown in Figure 2-1 and Figure 2-2.

Figure 2-1: BOC Limited Kooragang and vicinity (Spatial Information Exchange [SIXMaps] 2016)

Figure 2-2: Location of BOC Limited's cooling towers and wastewater tanks

The BOC Kooragang office and plant has, on average, three (3) staff members onsite during normal operating hours. The office and plant contains one kitchen, and toilets. BOC Kooragang does not have access to Hunter Water's sewer system. Onsite treatment of amenity wastewater (toilets and sinks) is performed by an onsite septic wastewater treatment system, which is managed using an approved contractor.

3 Assessment of Current Wastewater Storage System

3.1 Overview of current wastewater storage system

BOC Kooragang currently possess two (2) cooling towers onsite. The cooling tower blowdown (waste) water continues to two (2) 10,000 litre capacity storage tanks, with a total a capacity of 20,000 litres storage onsite. The cooling tower blowdown operates on a time based cycle. The cooling tower process is consistent in wastewater production, therefore changes in the process will not result in an increased volume of wastewater.

The wastewater storage tanks and cooling towers are presented in Figure 3-1 and Figure 3-2. Cooling tower blowdown water of volume 20,000 litres is collected by an approved and licensed waste contractor once a week. The amount of cooling tower blowdown water produced and disposed of is a significant cost to BOC Kooragang's operations. The direct cost to BOC Kooragang is approximately \$40,000 per quarter.

Figure 3-1: Current cooling tower blowdown wastewater storage tanks

Figure 3-2: BOC Kooragang cooling towers

3.2 Current Water Quality Assessment

In order to research the possibility of utilising the cooling tower wastewater for onsite irrigation, MJM was engaged by BOC Kooragang from 2014 to 2016 to undertake wastewater sampling and analysis to obtain baseline data.

The analytes tested are presented in Table 3-1, which are taken from the Australian and New Zealand Environment and Conservation Council (ANZECC) 2000 guidelines. The water sampling analysis results were compared to the ANZECC guidelines presented in *Section 4: Primary Industries - 4.2 Water Quality for irrigation and general water use*.

Analytes						
рН	Herbicides	Iron				
Enterococci	Pesticides	Lead				
Faecal (thermotolerant) Coliforms	Cadmium	Lithium				
Electrical conductivity	Zinc	Manganese				
Sodium Absorption Ratio (sodicity)	Aluminium	Mercury				
Alkalinity as calcium carbonate	Arsenic	Molybdenum				
Chloride	Beryllium	Nickel				
Sodium	Boron	Selenium				
Fluoride	Chromium VI	Uranium				
Nitrogen (total)	Cobalt	Vanadium				
Phosphorus	Copper					

Table 3-1: Cooling tower wastewater sampling analytes

Water quality sampling was performed in 2014 to 2016. Three samples (3) were performed in August 2014, one (1) sample in April 2015 and one (1) sample was performed in August 2016.

Sampling was performed in accordance with ANZECC monitoring standards AS/NZS 5667.1:1998 and AS/NZS 5667.11:1998. These procedures include the documentation of the name and location of the sample point, date and time of sample collection, the type of sample point, method of sample collection and sample appearance at the time of collection. The water samples were then transferred into clean plastic bottles provided by a NATA accredited laboratory.

The results for the cooling tower wastewater sampling from 2014 to 2016 are presented in Table 3-2.

		Table 3-2: E	BOC Limited cooling t	ower wastewater s	ampling results			
Analyte	Units	Result 27/08/2014	Result 03/09/2014	Result 11/09/2014	Result 01/04/2014	Result 18/09/2016	Average	Recommended Irrigation Thresholds ¹
рН	pH Unit	7.85	7.95	7.83	-	8.18	7.95	6 – 9
Enterococci	CFU/100mL	~9	~4	<1	-	~4	~5	-
Faecal (thermo tolerant) Coliforms	CFU/100mL	<1	<1	<1	-	~1	~1	<10,000 4
Electrical conductivity	μS/cm	1,670	1,690	1,650	-	1,550	1,640	-
Sodium Absorption Ratio	-	5.2	4.61	4.32	-	4.08	4.55	-
Alkalinity as calcium carbonate (hardness)	mg/L	60	58	68	-	97	71	-
Chemical oxygen demand (COD)	mg/L	-	-	-	50	-	-	-
Suspended solids (SS)	mg/L	-	-	-	13	-	-	-
Chloride	mg/L	294	292	349	-	307	311	-
Sodium	mg/L	223	198	179	-	177	194	-
Fluoride	mg/L	7.7	7.3	7.5	-	3.5	6.5	1.0 ² 2.0 ³
Nitrogen (total)	mg/L	11.0	10.0	8.9	-	3.8	8.4	25 - 125 ² 5 ³
Phosphorus	mg/L	3.62	2.77	4.17	-	2.13	3.17	0.8 - 12 ² 0.05 ³
Cadmium	mg/L	<0.0001	0.0001	<0.0001	-	<0.0001	0.0001	0.01 ² 0.05 ³
Zinc	mg/L	0.025	0.025	0.018	-	0.012	0.020	2.0 ² 5.0 ³
Aluminium	mg/L	0.04	0.07	0.04	-	0.12	0.07	5.0 ² 20 ³
Arsenic	mg/L	0.003	0.003	0.003	-	0.002	0.003	0.1 ² 2.0 ³
Beryllium	mg/L	<0.001	<0.001	<0.001	-	<0.001	<0.001	0.1 ² 0.5 ³
Boron	mg/L	0.2	0.22	0.17	-	0.18	0.19	0.5 ² 2 - 4 ⁵
Chromium VI	mg/L	<0.01	<0.01	<0.01	-	<0.01	<0.01	0.1 ² 1.0 ³
Cobalt	mg/L	<0.001	<0.001	<0.001	-	< 0.001	<0.001	0.05 ²

 Table 3-2: BOC Limited cooling tower wastewater sampling results

Wastewater Treatment Design Report

BOC Limited - Kooragang Island

Analyte	Units	Result 27/08/2014	Result 03/09/2014	Result 11/09/2014	Result 01/04/2014	Result 18/09/2016	Average	Recommended Irrigation Thresholds
								0.1 ³
Copper	mg/L	0.154	0.136	0.146	_	0.120	0.14	0.2 ²
соррег	IIIg/L	0.154	0.150	0.140	-	0.120	0.14	5.0 ³
ron	mg/L	0.1	0.1	0.07	-	0.15	0.11	0.22
								10 ³ 2.0 ²
Lead	mg/L	<0.001	<0.001	<0.001	-	<0.001	<0.001	2.0 ² 5.0 ³
	/,	0.005	0.005	0.005		0.005	0.005	2.5 ²
Lithium	mg/L	0.005	0.005	0.005	-	0.005	0.005	2.5 ³
Manganese	mg/L	0.008	0.007	0.007	_	0.003	0.006	0.2 ²
wangunese	1118/ 2	0.000	0.007	0.007		0.000	0.000	10 ³
Mercury	mg/L	<0.0001	<0.0001	<0.0001	-	<0.0001	<0.0001	0.002 ² 0.002 ³
Molybdenum	mg/L	0.002	0.002	0.002	-	<0.001	0.0016	0.01 ² 0.05 ³
Nickel	mg/L	0.003	0.003	0.003	-	0.012	0.005	0.2 ²
								2.0 ³ 0.02 ²
Selenium	mg/L	<0.01	<0.01	<0.01	-	<0.01	<0.01	0.02- 0.05 ³
		<0.001	<0.001	<0.001		<0.001	<0.001	0.012
Uranium	mg/L	<0.001	<0.001	<0.001	-	<0.001	<0.001	0.1 ³
Vanadium	mg/L	<0.01	<0.01	<0.01	-	<0.01	<0.01	0.12
	_							0.5 ³
Herbicide (Phenoxyacetic Acid Herbic	•	.10	.40	.10		.10	-10	1,000 ⁶
4-Chlorophenoxy acetic acid	μg/L	<10	<10	<10	-	<10	<10	,
2.4-DB Dicamba	μg/L	<10 <10	<10 <10	<10 <10	-	<10 <10	<10 <10	1,000
	μg/L					-	-	
Mecoprop	μg/L	<10	<10	<10	-	<10	<10	1,000
MCPA	μg/L	<10	<10	<10	-	<10	<10	1,000
2.4-DP	μg/L	<10	<10	<10	-	<10	<10	1,000
2.4-D	μg/L	<10	<10	<10	-	<10	<10	1,000
	μg/L	<10	<10	<10	-	<10	<10	1,000
2.4.5-TP (Silvex)	μg/L	<10	<10	<10	-	<10	<10	1,000
2.4.5-T	μg/L	<10	<10	<10	-	<10	<10	1,000
ИСРВ	μg/L	<10	<10	<10	-	<10	<10	1,000
Picloram	μg/L	<10	<10	<10	-	<10	<10	1,000
Clopyralid	μg/L	<10	<10	<10	-	<10	<10	1,000
Fluroxypyr	μg/L	<10	<10	<10	-	<10	<10	1,000
2.6-D	μg/L	<10	<10	<10	-	<10	<10	1,000
2.4.6-T	μg/L	<10	<10	<10	_	<10	<10	1,000

Wastewater Treatment Design Report

Analyte	Units	Result 27/08/2014	Result 03/09/2014	Result 11/09/2014	Result 01/04/2014	Result 18/09/2016	Average	Recommended Irrigation Thresholds ¹
alpha-BHC	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000 ⁶
Hexachlorobenzene (HCB)	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
beta-BHC	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
gamma-BHC	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
delta-BHC	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Heptachlor	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Aldrin	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Heptachlor epoxide	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
trans-Chlordane	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
alpha-Endosulfan	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
cis-Chlordane	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Dieldrin	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
4.4-DDE	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Endrin	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
beta-Endosulfan	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
4.4-DDD	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Endrin aldehyde	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Endosulfan sulfate	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
4.4-DDT	μg/L	<2.0	<2.0	<2.0	-	<2.0	<2.0	1,000
Endrin ketone	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Methoxychlor	μg/L	<2.0	<2.0	<2.0	-	<2.0	<2.0	1,000
Pesticide (Organophosphorus Pesticid					•	•		•
Dichlorvos	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Demeton-S-methyl	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Monocrotophos	μg/L	<2.0	<2.0	<2.0	-	<2.0	<2.0	1,000
Dimethoate	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Diazinon	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Chlorpyrifos-methyl	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Parathion-methyl	μg/L	<2.0	<2.0	<2.0	-	<2.0	<2.0	1,000
Malathion	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Fenthion	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Chlorpyrifos	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Parathion	μg/L	<2.0	<2.0	<2.0	-	<2.0	<2.0	1,000
Pirimphos-ethyl	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Chlorfenvinphos	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Bromophos-ethyl	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Fenamiphos	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Prothiofos	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Ethion	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Carbophenothion	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000
Azinphos Methyl	μg/L	<0.5	<0.5	<0.5	-	<0.5	<0.5	1,000

¹Australian and New Zealand Environment and Conservation Council (ANZECC) 2000 guidelines - Section 4: Primary Industries - 4.2 Water Quality for irrigation and general water use.

² Short-term trigger value (STV) – The STV is the maximum concentration (mg/L) of contaminant in the irrigation water which can be tolerated for a shorter period of time (20 years). ³ Long-term trigger value (LTV) – The LTV is the maximum concentration (mg/L) of contaminant in the irrigation water which can be tolerated assuming 100 years of irrigation.

⁴ Trigger value chosen for areas with restricted public access.

⁵ Trigger value chosen for moderately tolerant crops.

⁶ General limit set for herbicides for NSW.

The Short-term Trigger Values (STV) and Long-term Trigger Values (LTV) presented in Table 3-2 are recommendations from the *Australian and New Zealand Environment and Conservation Council (ANZECC) 2000* guidelines (ANZECC guidelines). The guidelines for irrigation were chosen for comparison with the cooling tower wastewater quality.

Table 3-2 shows that Fluoride exceeded the STV and LTV for all three samples with an average of 6.5 mg/L. It is noted that the guidelines state 'the LTV has been set on the assumption that irrigation water could potentially be phytotoxic to sensitive plant or contaminate stock drinking water'.

Nitrogen (total) was within the STV range, however exceeded the LTV for all three samples with an average of 10.0 mg/L. It is noted that the guidelines state for nitrogen that 'the LTV has been set at a concentration low enough to ensure no decrease in crop yields or quality due to excessive nitrogen concentrations during later flowering and fruiting stages'.

Phosphorus concentrations for all three samples also exceeded the LTV with an average of 3.52 mg/L. However it is noted that the guidelines state the LTV for phosphorus is set 'to minimise bioclogging of irrigation equipment only'. It is therefore possible to manage phosphorus levels with routine maintenance of irrigation equipment.

The remaining analytes were compliant with the recommended threshold levels.

Therefore it was identified that Fluoride was the main analyte of concern. Investigations were commenced to provide a treatment option for removal of fluoride from the cooling tower wastewater.

4 Pilot Plant Trial for Removal of Fluoride

In September and October 2016, MJM performed a pilot plant trial for the removal of fluoride using a AA media in a pilot scale filter unit. It was found that the pilot scale filter unit successfully removed fluoride to acceptable levels, and also reduced phosphorus concentrations. Table 4-1 presents the results of the analytes monitored and the pilot trial report.

The study was focused on fluoride removal to meet the ANZECC guidelines for LTV (100 years of irrigation) and therefore analytes were chosen that were of concern for irrigation. Analytes such as metals, herbicides and pesticides were not targeted and therefore not monitored as the concentrations of the analytes were already below the ANZECC guidelines or not detected in the raw water.

Analyte	Units	Treated water quality	Recommended Irrigation Thresholds ¹
рН	pH Unit	7	6 – 9
Electrical conductivity	μS/cm	1,520	-
Sodium Absorption Ratio (SAR)	-	7	-
Chloride	mg/L	300	-
Sodium	mg/L	229	-
Fluoride	mg/L	0.2	1.0 ² 2.0 ³
Nitrogen (total)	mg/L	3	25 - 125 ² 5 ³
Phosphorus	mg/L	0.02	0.8 - 12 ² 0.05 ³

Table 4-1: BOC Kooragang pilot trial treated water quality results

¹Australian and New Zealand Environment and Conservation Council (ANZECC) 2000 guidelines - Section 4: Primary Industries - 4.2 Water Quality for irrigation and general water use.

² Short-term trigger value (STV) – The STV is the maximum concentration (mg/L) of contaminant in the irrigation water which can be tolerated for a shorter period of time (20 years).

³ Long-term trigger value (LTV) – The LTV is the maximum concentration (mg/L) of contaminant in the irrigation water which can be tolerated assuming 100 years of irrigation.

As a result of the trial it was recommended to develop a treatment design based on AA adsorption. The following section presents the proposed treatment design.

5 Wastewater Treatment Design

5.1 Proposed Treatment System

5.1.1 DESIGN BASIS

The recommended treatment process is activated alumina media adsorption and onsite irrigation.

The design basis for the preferred treatment option is presented in Table 5-1.

Table 5-1: Treatment option design criteria

Criteria	Unit	Value
Wastewater produced weekly	L	20,000
Raw water fluoride	mg/L	8
Treated water fluoride target	mg/L	<1
Activated alumina fluoride uptake capacity	mg/kg	2,500
Activated alumina density	kg/m ³	700
Activated alumina required for 12 months	kg	3,072
	t	3.1

5.1.2 TREATMENT PROCESS DESIGN

The proposed process configuration will consist of the following:

- Existing 2 X 10 kL cooling tower blowdown storage tanks
- 1 X cooling tower blowdown storage tank submersible pump
- 1 X flow meter
- 2 X open gravity filters
- 1 X 20 kL treated water storage tank
- 1 X treated water storage tank submersible pump
- Irrigation pipework
- Application of effluent to land using a Drip irrigation system

A process and instrumentation diagram is presented in Appendix A. The AA filtration process design is presented in the following table.

Criteria	Unit	Value			
Activated alumina fluoride uptake capacity	mg/kg	2,500			
Activated alumina density	kg/m ³	700			
Activated alumina required for 12 months	kg	3,072			
	t	3.1			
Filter media volume required	m ³	4.4			
Number of Filters	no. off	2			
Filter Diameter	m	1.6			
Contact time	min	10			
Filter Design Flow	m³/h	13.2			
Filter Design Flow	L/s	3.7			
Time Required to Treat 20 kL	min	91			
Mode of Operation	Filters operating in parallel without the need for filter backwashing				

The open gravity filters have been sized to treat the blowdown wastewater produced for a period of 12 months. At the end of 12 months the media will reach its maximum fluoride uptake capacity and will need to be replaced. Preliminary waste classification of the AA used in the pilot trial showed the media can be classified as general solid waste (non-putrescible). However it is recommended that the media be reclassified at the end of 12 months of operation due to the likelihood of elevated fluoride levels which may exceed waste classification guideline limits.

The AA filtered water will be collected in a new 20 kL treated water storage tank.

5.2 Proposed Irrigation Option

5.2.1 IRRIGATION PIPEWORK OVERVIEW

New irrigation pipework will be installed from the gravity filters to an existing underground copper line which runs across the site to the proposed irrigation area. New pipework will then be installed from the existing pipework to the treated water storage tank. A general arrangement diagram showing where the proposed gravity filters and irrigation pipework will be installed is presented in Figure 5-1.

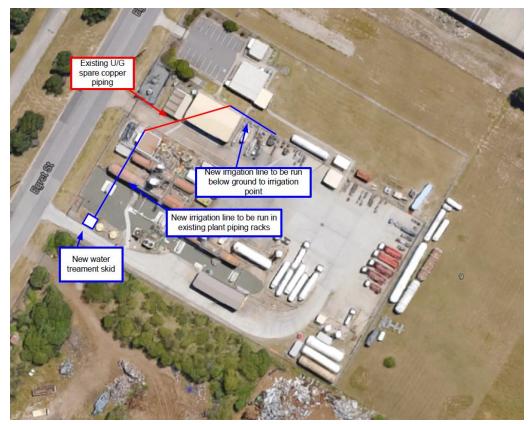


Figure 5-1: Proposed filters and irrigation pipework

5.2.2 IRRIGATION AREA

The proposed irrigation area selected by BOC Kooragang and its approximate dimensions are presented in Figure 5-2.

An Irrigation Options Report has been prepared by MJM for submission to NSW EPA to obtain a licence variation for the proposed irrigation.

The report findings show the proposed irrigation system at the BOC Kooragang site is feasible for the following reasons:

- Water balance calculations show that the estimated percolation rate of the proposed irrigation is well below the typical range of percolation rates for the soil type at the facility. When managed appropriately at the estimated rate of application, is it believed the soil type is therefore able to handle the capacity of the effluent applied based upon percolation rates and unlikely to cause ponding.
- Nitrogen and phosphorus balances performed show that the concentration of these analytes are not limiting factors for irrigation purposes.

Figure 5-2: Proposed irrigation area

A drip irrigation system is proposed to be utilised. Drip irrigation systems provide more operational flexibility and efficiency. Pressurised effluent is discharged through micro-emitters and dripped; this process reduces the risk of aerosol drift and potential odour.

5.3 Cost Estimates

The estimated capital, operating and lifecycle costs for the proposed treatment design are presented in Table 5-3.

Item	Result				
Capital Costs					
Open gravity filter, 2 off	\$ 15,120				
Treated water storage tank	\$ 15,000				
Submersible pump, 2 off	\$ 2,000				
Pipework and valves	\$ 10,400				
PLC and Scada	\$ 5,000				
Level sensors, 4 off	\$ 16,000				
Flowmeter	\$ 2,500				
Total estimated capital costs including contingency of 20%	\$ 79,224				
Operating Costs					
Activated alumina 3,100 kg at \$3.90/kg, includes gravel and sand media	\$ 13,250				
Annual maintenance cost (assumed 2% of capital cost)	\$ 3,220				
Total estimated annual operating costs	\$ 14,570				
Net Present Value (NPV) Analysis $NPV = Cap + \sum_{n=0}^{N} \left(\frac{Op}{(1+dr)^{n}} \right)$					
NPV (1 %)	\$ 111,485				
NPV (2.5%)	\$ 106,952				
NPV (4 %)	\$103,296				

Table 5-3: Wastewater treatment design approximate costs

* Prices do not include GST or freight to site, testing or commissioning, design or documentation and are indicative at time of writing.

6 Recommendations

In October 2016 MJM carried out a pilot plant trial at the BOC Kooragang site. The objective of the trial was to determine the effectiveness of AA media adsorption for removing fluoride from the cooling tower blowdown wastewater. The results of the trial showed that AA adsorption was effective in removing the fluoride to below the recommended irrigation threshold limits and it was recommended that a treatment design be developed.

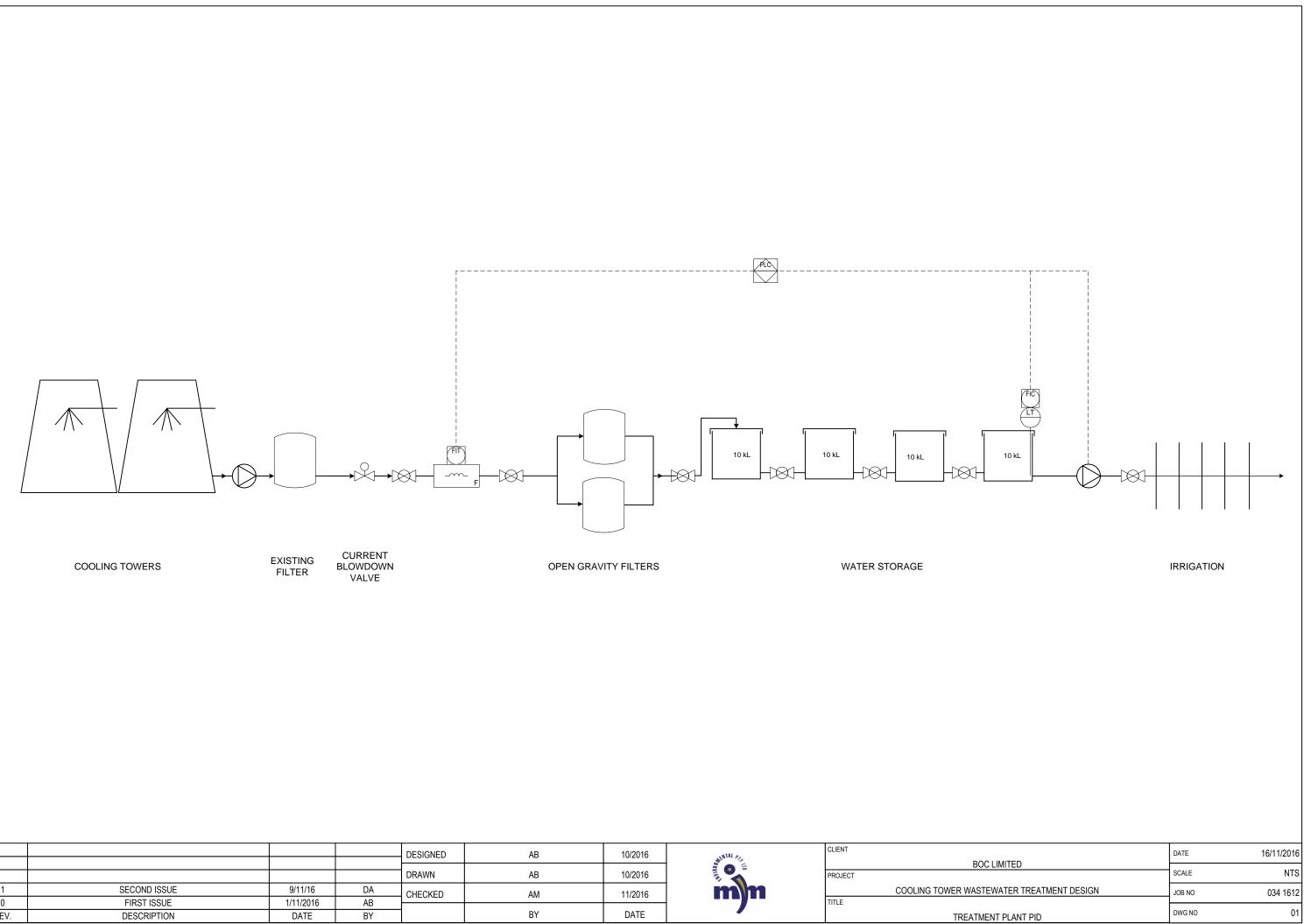
The proposed treatment design consists of AA adsorption and irrigation onsite. Table 6-1 shows an evaluation of the operational and financial criteria for the treatment design.

Criteria	Evaluation				
Operational Criteria					
Capability of achieving water quality targets (low, medium, high capability)	Medium-High				
Plant footprint required (low, medium, high area)	Medium				
Technology Risks (low, medium, high risk)	Low				
Operational complexity (low, medium, high complexity)	Low				
Chemical Handling Risks (low, medium, high risk)	Low				
Financials					
Capital Cost	\$ 79,224				
Annual Operating Cost	\$ 14,570				
Life Cycle Cost (4%)	\$ 103,296				

It is recommended BOC Kooragang proceed with the proposed cooling tower blowdown wastewater treatment design.

Appendix A – Process and Instrumentation Diagram

SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	LETTER	FIRST LETTER	MODIFIER	SUCCEEDING LETTER	
\bowtie	GATE VALVE		EJECTOR		PROCESS FLOW		GENERAL PUMP		INSTRUMENT, FIELD MOUNTED	A	ANALYSIS		ALARM	
										В	BURNER, FLAME		STATE OR STATUS DISPLAY	
GLOBE VALVE		BELL MOUTH		INSTRUMENT CONNECTION	+	CENTRIFUGAL PUMP	LSH	INSTRUMENT, REMOTE PANEL	С	CONDUCTIVITY		CONTROL		
		· · ·							MOUNTED, ON FRONT OF PANEL	D	DENSITY	DIFFERENCE		
TELESCOPIC VALVE	TELESCOPIC VALVE		DEDUICED			-(×)-	PERISTALTIC PUMP		INSTRUMENT, LOCAL PANEL	E	VOLTAGE		SENSING ELEMENT	
	TELESCOPIC VALVE		REDUCER		GENERIC SIGNAL		PERISTALTIC PUMP	$ \ominus$	MOUNTED, ON FRONT OF PANEL	F	FLOWRATE	RATIO		
Ţ,										STATUS INDICATOR, FIELD	G	GAUGE POSITION		GLASS
\mathbb{X}	ACTUATING VALVE		Y-STRAINER	O	DATA		GENERAL COMPRESSOR		MOUNTED	н	HAND OPERATED		HIGH (ALARM)	
							CENTRIFUGAL FAN		STATUS INDICATOR, REMOTE	I			INDICATING	
\bowtie	NON RETURN VALVE		ROTAMETER		PNEUMATIC		CENTRIFUGAL FAN		PANEL MOUNTED	J		SCAN		
≈ 1		 							STATUS INDICATOR, LOCAL	К	ТІМЕ		BARRIER	
SWING CHECK VALVE	°°°	AERATOR DIFFUSER		ELECTRIC	Ľ	AXIAL FAN		PANEL MOUNTED	L	LEVEL		LOW (ALARM)		
\bigcirc					CAPILLARY TUBE	\cap			DISPLAY/CONTROL DEVICE, FIELD	М	MOISTURE/HUMIDITY			
\bowtie	DIAPHRAGM VALVE		PULSATION DAMPNER				SPRAY NOZZLE		MOUNTED	N				
									DISPLAY/CONTROL DEVICE,	0				
\bowtie	FLOAT VALVE	F	ELECTROMAGNETIC FLOWMETER		HYDRAULIC		GENERAL FILTER		LOCAL PANEL INTERFACE	Р	PRESSURE/VACUUM		TEST POINT CONNECTION	
					ELECTROMAGNETIC WITH				DISPLAY/CONTROL DEVICE,	Q		INTEGRATE/TOTALISE	INTEGRATING OR SUMMATING	
\bowtie	RELIEF VALVE				WIRING		STATIC MIXER		REMOTE PANEL INTERFACE	R	RADIATION		RECORDING	
~≢					ELECTROMAGNETIC WITH NO					S	SPEED/FREQUENCY		SWITCHING	
Ľ.	ANGLED RELIEF VALVE				WIRING		AIR FILTER		PROGRAMMABLE LOGIC CONTROL, FIELD MOUNTED	Т	TEMPERATURE		TRANSMITTING	
						ļ.			PROGRAMMABLE LOGIC	U	MULTIVARIABLE		MULTIFUNCTION UNIT	
\bowtie	NEEDLE VALVE			+///+	FLEXIBLE HOSE		MECHANICAL MIXER		CONTROL, LOCAL PANEL INTERFACE	V	VIBRATION		VALVE, DAMPENER, LOUVRE ACTUATING ELEMENT	
1801	BALL VALVE								PROGRAMMABLE LOGIC CONTROL, REMOTE PANEL	w	WEIGHT FORCE		WELLS	
	DALL VALVE								INTERFACE	х			CATHODE RAY TUBE	
										Y			RELAY OR COMPUTING RELA	
	REDUCING VALVE									Z			EMERGENCY/SAFETY ACTING	


DRAWING NOTES:

1. ALL PIPING WILL BE UPVC

2. ALL DIMENSIONS IN METRIC UNITS UNLESS OTHERWISE STATED

CLIENT	MENTAL PLA	10/2016	AB	DESIGNED				
BO 🗄 BO	T 📓 🧑 🗄							
PROJECT		10/2016	AB	DRAWN				
COOLING TOWER WAST	mm	11/2016	AM	CHECKED				
TITLE		11/2010	,		AB	1/11/2016	FIRST ISSUE	0
		D 1 T T	51	_				
TREATM		DATE	BY		BY	DATE	DESCRIPTION	REV.

	DATE	16/11/2016
IMITED	SCALE	NTS
VATER TREATMENT DESIGN	JOB NO	034 1612
T PLANT PID	DWG NO	0

				DESIGNED	AB	10/2016	STAL Pr	CLIENT	
									BOC LIMI
				DRAWN	AB	10/2016		PROJECT	
1	SECOND ISSUE	9/11/16	DA	CHECKED	АМ	11/2016			COOLING TOWER WASTEWAT
0	FIRST ISSUE	1/11/2016	AB		7	11/2010		TITLE	
REV.	DESCRIPTION	DATE	BY		BY	DATE			TREATMENT P