BOC Kooragang Cooling Tower Wastewater Sampling Report - August 2016

BOC Limited Kooragang Island

26 August 2016

BOC Kooragang Cooling Tower Wastewater Sampling Report - August 2016

BOC Limited Kooragang Island

26 August 2016

MJM Environmental Pty Ltd ABN 21 089 600 019 Office 1, Level 2 355 Wharf Road Newcastle, NSW, 2300

Telephone: 02 4926 4222 Facsimile: 02 4929 4944

E-mail: enquiries@mjmenvironmental.com.au

Document Cor	itrol			Approved for Issue			
Project No.	Rev	Author	Reviewer	Name	Signature	Date	
034-1612	0	A Bucior	B Kelly	B Kelly		26/08/2016	

© MJM Environmental 2016

This document shall remain the property of MJM Environmental. Unauthorised use of this document in any form is prohibited. Information contained within this Document is 'Commercial in Confidence'.

Table of Contents

1	INTRODUCTION	4
2	SITE IDENTIFICATION	4
3	SAMPLING PLAN AND METHODOLOGY	
	3.1 Sampling Handling Procedures	
	RESULTS	
5	DISCUSSION	8
	st of Figures	
Fi _{	gure 2-1: BOC Limited Kooragang Vicinitygure 2-2: Location of BOC Limited's Cooling Towers and Wastewater Tanks	4 5
Li	st of Tables	
Ta	ble 3-1: Cooling Tower Wastewater Sampling Analytes	5

Table 4-1: BOC Limited Cooling Tower Wastewater Sampling Results6

Appendices

Appendix A – NATA Laboratory Results Appendix B – Sampling Field Notes

1 Introduction

BOC Limited Kooragang Island, herein referred to as BOC Kooragang, owns and operates a gas facility for the production and supply of gas products located at 9 Egret Street Kooragang, New South Wales. The facility operates 24 hours per day, 7 days per week. BOC Kooragang holds NSW Environmental Protection Authority (EPA) Environmental Protection Licence (EPL) 20165. The Scheduled Activities in the EPL include chemical storage waste generation, dangerous goods production and general chemicals storage.

BOC Kooragang currently possess two (2) cooling towers onsite. Currently the cooling tower blowdown (waste) water continues to two (2) 10,000 litre capacity storage tanks onsite, totalling a capacity of 20,000 litres storage onsite. The wastewater is collected by an approved waste contractor approximately once per week.

BOC Kooragang are researching the possibility of utilising the cooling tower wastewater for irrigation purposes in specific grassed areas of the site. In order to research the possibility of utilising the cooling tower wastewater onsite MJM Environmental (MJM) was engaged by BOC Kooragang in August 2016 to undertake water sampling and analysis.

This report outlines the results of the wastewater sampling carried out in August 2016.

2 Site Identification

BOC Kooragang operates a gas facility located at 9 Egret Street Kooragang, New South Wales. The plant vicinity map and location of the cooling towers and wastewater storage tanks are shown in Figure 2-1 and Figure 2-2.

Figure 2-1: BOC Limited Kooragang Vicinity

Figure 2-2: Location of BOC Limited's Cooling Towers and Wastewater Tanks

3 Sampling Plan and Methodology

The analytes tested are presented in Table 3-1, which are taken from the Australian and New Zealand Environment and Conservation Council (ANZECC) 2000 guidelines. The water sampling analysis results were compared to the ANZECC guidelines presented in Section 4: Primary Industries - 4.2 Water Quality for irrigation and general water use.

Analytes		
рН	Herbicides	Iron
Enterococci	Pesticides	Lead
Faecal (thermotolerant) Coliforms	Cadmium	Lithium
Electrical conductivity	Zinc	Manganese
Sodium Absorption Ratio (sodicity)	Aluminium	Mercury
Alkalinity as calcium carbonate (hardness)	Arsenic	Molybdenum
Chloride	Beryllium	Nickel
Sodium	Boron	Selenium
Fluoride	Chromium VI	Uranium
Nitrogen (total)	Cobalt	Vanadium
Phosphorus	Copper	

Table 3-1: Cooling Tower Wastewater Sampling Analytes

3.1 Sampling Handling Procedures

Sampling was performed in accordance with ANZECC monitoring standards (AS/NZS 5667.1:1998 and AS/NZS 5667.1:1998). These procedures include the documentation of the name and location of the sample point, date and time of sample collection, the type of sample point, method of sample collection and sample appearance at the time of collection. The water samples were then transferred into clean plastic bottles provided by a NATA accredited laboratory. The NATA laboratory results are presented in Appendix A and field notes in Appendix B.

4 Results

The results for the cooling tower wastewater sampling performed on 18 August 2016 are presented in Table 4-1 below.

Table 4-1: BOC Limited cooling tower wastewater sampling results 18 August 2016

Analyte	Units	Result	Recommended Irrigation Thresholds ¹	
рН	pH Unit	8.18	6 – 9	
Enterococci	CFU/100mL	~4	-	
Faecal (thermo tolerant) Coliforms	CFU/100mL	~1	<10,000 4	
Electrical conductivity	μS/cm	1,550	-	
Sodium Absorption Ratio	-	4.08	-	
Alkalinity as calcium carbonate (hardness)	mg/L	97	-	
Chloride	mg/L	307	-	
Sodium	mg/L	177	-	
Fluoride	mg/L	3.5	1.0 ² 2.0 ³	
Nitrogen (total)	mg/L	3.8	25 - 125 ² 5 ³	
Phosphorus	mg/L	2.13	0.8 - 12 ² 0.05 ³	
Cadmium	mg/L	<0.0001	0.01 ² 0.05 ³	
Zinc	mg/L	0.012	2.0 ² 5.0 ³	
Aluminium	mg/L	0.12	5.0 ² 20 ³	
Arsenic	mg/L	0.002	0.1 ² 2.0 ³	
Beryllium	mg/L	<0.001	0.1 ² 0.5 ³	
Boron	mg/L	0.18	0.5 ² 2 - 4 ⁵	
Chromium VI	mg/L	<0.01	0.1 ² 1.0 ³	
Cobalt	mg/L	<0.001	0.05 ² 0.1 ³	
Copper	mg/L	0.120	0.2 ² 5.0 ³	
Iron	mg/L	0.15	0.2 ² 10 ³	
Lead	mg/L	<0.001	2.0 ² 5.0 ³	
Lithium	mg/L	0.005	2.5 ² 2.5 ³	
Manganese	mg/L	0.003	0.2 ² 10 ³	
Mercury	mg/L	<0.0001	0.002 ² 0.002 ³	
Molybdenum	mg/L	<0.001	0.002 ⁻ 0.01 ² 0.05 ³	

Analyte	Units	Result	Recommended Irrigation Thresholds ¹
			0.22
Nickel	mg/L	0.012	2.03
			0.022
Selenium	mg/L	<0.01	0.05 ³
			0.012
Uranium	mg/L	<0.001	0.13
	/1	.0.01	0.12
Vanadium	mg/L	<0.01	0.53
Phenoxyacetic Acid Herbicides			
4-Chlorophenoxy acetic acid	μg/L	<10	1,000 ⁶
2.4-DB	μg/L	<10	1,000
Dicamba	μg/L	<10	1,000
Mecoprop	μg/L	<10	1,000
MCPA	μg/L	<10	1,000
2.4-DP	μg/L	<10	1,000
2.4-D	μg/L	<10	1,000
Triclopyr	μg/L	<10	1,000
2.4.5-TP (Silvex)	μg/L	<10	1,000
2.4.5-T	μg/L	<10	1,000
МСРВ	μg/L	<10	1,000
Picloram	μg/L	<10	1,000
Clopyralid	μg/L	<10	1,000
Fluroxypyr	μg/L	<10	1,000
2.6-D	μg/L	<10	1,000
2.4.6-T	μg/L	<10	1,000
Organochlorine Pesticides	F-6/ -		_,-,
alpha-BHC	μg/L	<0.5	1,0006
Hexachlorobenzene (HCB)	μg/L	<0.5	1,000
beta-BHC	μg/L	<0.5	1,000
gamma-BHC	μg/L	<0.5	1,000
delta-BHC	μg/L	<0.5	1,000
Heptachlor	μg/L	<0.5	1,000
Aldrin	μg/L	<0.5	1,000
Heptachlor epoxide	μg/L	<0.5	1,000
trans-Chlordane	μg/L	<0.5	1,000
alpha-Endosulfan	μg/L	<0.5	1,000
cis-Chlordane	μg/L	<0.5	1,000
Dieldrin	μg/L	<0.5	1,000
4.4-DDE	μg/L	<0.5	1,000
Endrin	μg/L	<0.5	1,000
beta-Endosulfan	μg/L	<0.5	1,000
4.4-DDD	μg/L	<0.5	1,000
Endrin aldehyde	μg/L	<0.5	1,000
Endosulfan sulfate	μg/L	<0.5	1,000
4.4`-DDT	μg/L	<2.0	1,000
Endrin ketone	μg/L	<0.5	1,000
Methoxychlor	μg/L	<2.0	1,000
Organophosphorus Pesticides	F-0/ =		-,
Dichlorvos	μg/L	<0.5	1,000
Demeton-S-methyl	μg/L	<0.5	1,000
Monocrotophos	μg/L	<2.0	1,000
Dimethoate	μg/L	<0.5	1,000
Diazinon	μg/L	<0.5	1,000
Chlorpyrifos-methyl	μg/L	<0.5	1,000
Parathion-methyl	μg/L	<2.0	1,000
Malathion	μg/L	<0.5	1,000
Fenthion	μg/L	<0.5	1,000
		<0.5	
Chlorpyrifos	110/1	(11.5	1 (111)
Chlorpyrifos Parathion	μg/L μg/L	<2.0	1,000 1,000

Analyte	Units	Result	Recommended Irrigation Thresholds ¹	
Chlorfenvinphos	μg/L	<0.5	1,000	
Bromophos-ethyl	μg/L	<0.5	1,000	
Fenamiphos	μg/L	<0.5	1,000	
Prothiofos	μg/L	<0.5	1,000	
Ethion	μg/L	<0.5	1,000	
Carbophenothion	μg/L	<0.5	1,000	
Azinphos Methyl	μg/L	<0.5	1,000	

¹ Australian and New Zealand Environment and Conservation Council (ANZECC) 2000 guidelines - Section 4: Primary Industries - 4.2 Water Quality for irrigation and general water use.

5 Discussion

MJM Environmental was engaged by BOC Kooragang to investigate the possibility of utilising the cooling tower wastewater stored onsite for irrigation purposes by undertaking wastewater sampling and analysis. The results were compared to the Australian and New Zealand Environment and Conservation Council (ANZECC) 2000 guidelines. The results for the wastewater samples taken on 18 August 2016 are presented above.

The Short-term Trigger Values (STV) and Long-term Trigger Values (LTV) presented in Table 4-1 are recommendations from the ANZECC guidelines.

From Table 4-1 it can be seen that Fluoride exceeded the STV and LTV with a concentration of 3.5 mg/L. It is noted that the guidelines state 'the LTV has been set on the assumption that irrigation water could potentially be phytotoxic to sensitive plant or contaminate stock drinking water'.

Phosphorus concentration exceeded the LTV with a concentration of 2.13 mg/L. However it is noted that the guidelines state the LTV for phosphorus is set 'to minimise bioclogging of irrigation equipment only'.

Pesticides and herbicides were not detected.

The remaining analytes were compliant with the recommended threshold levels.

² Short-term trigger value (STV) – The STV is the maximum concentration (mg/L) of contaminant in the irrigation water which can be tolerated for a shorter period of time (20 years).

³ Long-term trigger value (LTV) – The LTV is the maximum concentration (mg/L) of contaminant in the irrigation water which can be tolerated assuming 100 years of irrigation.

⁴ Trigger value chosen for areas with restricted public access.

⁵ Trigger value chosen for moderately tolerant crops.

⁶ General limit set for herbicides for NSW.

BOC Wastewater Sampling - August 2016	BOC Limited Kooragang Island
Appendix A – NATA Laboratory Results	

CERTIFICATE OF ANALYSIS

Work Order : ES1618232

Client : MJM ENVIRONMENTAL PTY LTD

Contact : MS BRIGID KELLY

Address : OFFICE 1, 335 WHARF ROAD

NEWCASTLE NSW, AUSTRALIA 2300

Telephone : +61 49264222
Project : 034 1612
Order number : 49264222

C-O-C number : ----

Sampler : ADAM BUCIOR

Site : ---Quote number : ---No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact :

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 18-Aug-2016 11:49

Date Analysis Commenced : 18-Aug-2016

Issue Date : 25-Aug-2016 09:38

NATA
WORLD RECOGNISED
ACCREDITATION

NATA Accredited Laboratory 825
Accredited for compliance with
ISO/IEC 17025.

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aaron Ivory	Technical Officer	Chemistry, Newcastle West, NSW
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Dian Dao		Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Lana Nguyen	Senior LCMS Chemist	Sydney Organics, Smithfield, NSW
Somlok Chai	Microbiologist	Sydney Microbiology, Smithfield, NSW

Page : 2 of 7
Work Order : ES1618232

Client : MJM ENVIRONMENTAL PTY LTD

Project : 034 1612

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP202: Poor matrix spike recovery for due to matrix interferences(confirmed by re-analysis).
- Sampling time not provided. For operational reasons an assumed date/time (3pm on date of receipt) is used. Sample results may be affected if the analysis falls outside of actual holding time.
- MF = membrane filtration
- CFU = colony forming unit
- Membrane filtration (MF) results for MW006 and MW023 are reported as an estimate (~) when the growth of bacteria on the filter membrane is counted <10cfu and/or >100cfu.
- MW023 is ALS's internal code and is equivalent to AS4276.9.
- MW006 is ALS's internal code and is equivalent to AS4276.7.

Page : 3 of 7
Work Order : ES1618232

Client : MJM ENVIRONMENTAL PTY LTD

Project : 034 1612

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	COOLING TOWER	 	
	Cli	ent sampli	ing date / time	[18-Aug-2016]	 	
Compound	CAS Number	LOR	Unit	ES1618232-001	 	
•				Result	 	
EA005: pH						
pH Value		0.01	pH Unit	8.18	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	μS/cm	1550	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	97	 	
Total Alkalinity as CaCO3		1	mg/L	97	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	307	 	
ED093F: Dissolved Major Cations						
Sodium	7440-23-5	1	mg/L	177	 	
ED093F: SAR and Hardness Calculation			J			
Total Hardness as CaCO3		1	mg/L	356	 	
Sodium Adsorption Ratio		0.01		4.08	 	
EG020F: Dissolved Metals by ICP-MS						I .
Aluminium	7429-90-5	0.01	mg/L	0.12	 	
Arsenic	7440-38-2	0.001	mg/L	0.002	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Cobalt	7440-48-4	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.120	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Lithium	7439-93-2	0.001	mg/L	0.005	 	
Manganese	7439-96-5	0.001	mg/L	0.003	 	
Molybdenum	7439-98-7	0.001	mg/L	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	0.012	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	 	
Uranium	7440-61-1	0.001	mg/L	<0.001	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.012	 	
Boron	7440-42-8	0.05	mg/L	0.18	 	
Iron	7439-89-6	0.05	mg/L	0.15	 	
EG035F: Dissolved Mercury by FIMS						

Page : 4 of 7
Work Order : ES1618232

Client : MJM ENVIRONMENTAL PTY LTD

Project : 034 1612

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	COOLING TOWER				
	Cli	ent samplii	ng date / time	[18-Aug-2016]				
Compound	CAS Number	LOR	Unit	ES1618232-001				
				Result				
EG035F: Dissolved Mercury by FIMS	- Continued							
Mercury	7439-97-6	0.0001	mg/L	<0.0001				
EG050F: Dissolved Hexavalent Chro	mium							
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01				
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	3.5				
EK059G: Nitrite plus Nitrate as N (N		vser						
Nitrite + Nitrate as N		0.01	mg/L	1.76				
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser		_					
Total Kjeldahl Nitrogen as N		0.1	mg/L	2.0				
EK062G: Total Nitrogen as N (TKN +			3. =	.				
^ Total Nitrogen as N	NOX) by Discrete An	0.1	mg/L	3.8				
		0.1	IIIg/L	3.0				
EK067G: Total Phosphorus as P by I Total Phosphorus as P		0.01	ma/l	2.13	l	<u> </u>	l	I
•		0.01	mg/L	2.13				
EP068A: Organochlorine Pesticides						I	I	I
alpha-BHC	319-84-6	0.5	μg/L	<0.5				
Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5				
beta-BHC	319-85-7	0.5	μg/L	<0.5				
gamma-BHC	58-89-9	0.5	μg/L	<0.5				
delta-BHC	319-86-8	0.5	μg/L	<0.5				
Heptachlor	76-44-8	0.5	μg/L	<0.5				
Aldrin	309-00-2	0.5	μg/L	<0.5				
Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5				
trans-Chlordane	5103-74-2	0.5	μg/L	<0.5				
alpha-Endosulfan	959-98-8	0.5	μg/L	<0.5				
cis-Chlordane	5103-71-9	0.5	μg/L	<0.5				
Dieldrin	60-57-1	0.5	μg/L	<0.5				
4.4`-DDE	72-55-9	0.5	μg/L	<0.5				
Endrin	72-20-8	0.5	μg/L	<0.5				
beta-Endosulfan	33213-65-9	0.5	μg/L	<0.5				
4.4`-DDD	72-54-8	0.5	μg/L	<0.5				
Endrin aldehyde	7421-93-4	0.5	μg/L	<0.5				
Endosulfan sulfate	1031-07-8	0.5	μg/L	<0.5				
4.4`-DDT	50-29-3	2	μg/L	<2.0				
Endrin ketone	53494-70-5	0.5	μg/L	<0.5				

Page : 5 of 7
Work Order : ES1618232

Client : MJM ENVIRONMENTAL PTY LTD

Project : 034 1612

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	COOLING TOWER	 	
	Client sampling date / time			[18-Aug-2016]	 	
Compound	CAS Number	LOR	Unit	ES1618232-001	 	
				Result	 	
EP068A: Organochlorine Pesticio	des (OC) - Continued					
Methoxychlor	72-43-5	2	μg/L	<2.0	 	
^ Total Chlordane (sum)		0.5	μg/L	<0.5	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.5	μg/L	<0.5	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.5	μg/L	<0.5	 	
EP068B: Organophosphorus Pes			10			
Dichlorvos	62-73-7	0.5	μg/L	<0.5	 	
Demeton-S-methyl	919-86-8	0.5	μg/L	<0.5	 	
Monocrotophos	6923-22-4	2	μg/L	<2.0	 	
Dimethoate	60-51-5	0.5	μg/L	<0.5	 	
Diazinon	333-41-5	0.5	μg/L	<0.5	 	
Chlorpyrifos-methyl	5598-13-0	0.5	μg/L	<0.5	 	
Parathion-methyl	298-00-0	2	μg/L	<2.0	 	
Malathion	121-75-5	0.5	μg/L	<0.5	 	
Fenthion	55-38-9	0.5	μg/L	<0.5	 	
Chlorpyrifos	2921-88-2	0.5	μg/L	<0.5	 	
Parathion	56-38-2	2	μg/L	<2.0	 	
Pirimphos-ethyl	23505-41-1	0.5	μg/L	<0.5	 	
Chlorfenvinphos	470-90-6	0.5	μg/L	<0.5	 	
Bromophos-ethyl	4824-78-6	0.5	μg/L	<0.5	 	
Fenamiphos	22224-92-6	0.5	μg/L	<0.5	 	
Prothiofos	34643-46-4	0.5	μg/L	<0.5	 	
Ethion	563-12-2	0.5	μg/L	<0.5	 	
Carbophenothion	786-19-6	0.5	μg/L	<0.5	 	
Azinphos Methyl	86-50-0	0.5	μg/L	<0.5	 	
EP202A: Phenoxyacetic Acid Her	bicides by LCMS					
4-Chlorophenoxy acetic acid	122-88-3	10	μg/L	<10	 	
2.4-DB	94-82-6	10	μg/L	<10	 	
Dicamba	1918-00-9	10	μg/L	<10	 	
Mecoprop	93-65-2	10	μg/L	<10	 	
МСРА	94-74-6	10	μg/L	<10	 	
2.4-DP	120-36-5	10	μg/L	<10	 	
2.4-D	94-75-7	10	μg/L	<10	 	
Triclopyr	55335-06-3	10	μg/L	<10	 	
Silvex (2.4.5-TP/Fenoprop)	93-72-1	10	μg/L	<10	 	

Page : 6 of 7
Work Order : ES1618232

Client : MJM ENVIRONMENTAL PTY LTD

Project : 034 1612

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			COOLING TOWER	 	
	Cli	ent sampl	ing date / time	[18-Aug-2016]	 	
Compound	CAS Number	LOR	Unit	ES1618232-001	 	
				Result	 	
EP202A: Phenoxyacetic Acid Herbicio	des by LCMS - Contir	nued				
2.4.5-T	93-76-5	10	μg/L	<10	 	
МСРВ	94-81-5	10	μg/L	<10	 	
Picloram	1918-02-1	10	μg/L	<10	 	
Clopyralid	1702-17-6	10	μg/L	<10	 	
Fluroxypyr	69377-81-7	10	μg/L	<10	 	
2.6-D	575-90-6	10	μg/L	<10	 	
2.4.6-T	575-89-3	10	μg/L	<10	 	
MW006: Faecal Coliforms & E.coli by	MF					
Faecal Coliforms		1	CFU/100mL	~1	 	
MW023: Enterococci by Membrane Fi	Itration					
Enterococci		1	CFU/100mL	~4	 	
EP068S: Organochlorine Pesticide Su	ırrogate					
Dibromo-DDE	21655-73-2	0.5	%	94.8	 	
EP068T: Organophosphorus Pesticid	e Surrogate					
DEF	78-48-8	0.5	%	73.2	 	
EP202S: Phenoxyacetic Acid Herbicio	de Surrogate					
2.4-Dichlorophenyl Acetic Acid	19719-28-9	10	%	100	 	

Page : 7 of 7
Work Order : ES1618232

Client : MJM ENVIRONMENTAL PTY LTD

Project : 034 1612

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)									
Compound	CAS Number	Low	High							
EP068S: Organochlorine Pesticide Surrogate										
Dibromo-DDE	21655-73-2	30	120							
EP068T: Organophosphorus Pesticide Surrogate										
DEF	78-48-8	27	129							
EP202S: Phenoxyacetic Acid Herbicide Surrogate										
2.4-Dichlorophenyl Acetic Acid	19719-28-9	64	140							

BOC Wastewater Sampling - August 2016	BOC Limited Kooragang Island
Appendix B – Sampling Field Notes	
rippenant 2 camping riesa itotes	

WASTE WATER SAMPLING FORM

Client Name:		BOC Li	mited Kooragang Island	<u> </u>				
Date	18	8	8 2016		Time:	11:00		
D	ay	Month	Year					
Reasons for	sampling		Research the possibli	ty of us	ing cooling	tower waste	ewater for irriga	ation
Location of sampling point:		Near cooling towers, close to Egret St						
Nature of sampling point		Groundwater	. [Tradewa	aste sump	Surface wa	ter	
			Stormwater	X	Other	Please sp	ecify	
				Wa	astewater s	stored in 10,0	000 L Poly Tan	ıks
Sample ID:			Cooling Tower		· •• • •			
Depth sampl	e taken:		1 m					
Sample appe	earance		Clear					
Water Level	in Tank		1.2 m					
Volume of sa	ample tak	en	1.5 L					
Name of Sar	mpler		AB					
Method of sa	ampling		In-situ bailer					
Nature of sar	mple poin	t	Storage Took					
COC Refere	nce No.		AB180816					
Number of B	ottles		77					
Other comm	ents:							

NOTE: ONE WATER SAMPLING FORM TO BE COMPLETED FOR EACH SAMPLE POINT